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Abstract

Floristic surveys are crucial to the conservation of biodiversity, but the vast majority of such

surveys are limited to listing species names, and few take into account the evolutionary his-

tory of species. Here, we combine classical taxonomic and molecular phylogenetic (DNA

barcoding) approaches to catalog the biodiversity of pteridophytes (ferns and lycophytes) of

the Nectandra Cloud Forest Reserve, Costa Rica. Surveys were carried out over three field

seasons (2008, 2011, and 2013), resulting in 176 species representing 69 genera and 22

families of pteridophytes. Our literature survey of protected areas in Costa Rica shows that

Nectandra has an exceptionally diverse pteridophyte flora for its size. Plastid rbcL was

selected as a DNA barcode marker and obtained for >95% of pteridophyte taxa at this site.

Combined molecular and morphological analyses revealed two previously undescribed taxa

that appear to be of hybrid origin. The utility of rbcL for species identification was assessed

by calculating minimum interspecific distances and found to have a failure rate of 18%.

Finally we compared the distribution of minimum interspecific rbcL distances with two other

areas that have been the focus of pteridophyte molecular surveys: Japan and Tahiti. The

comparison shows that Nectandra is more similar to Japan than Tahiti, which may reflect

the biogeographic history of these floras.

Introduction

Despite its small area (51,100 km2), Costa Rica is home to remarkably high biodiversity, and is

ranked as one of the world’s top 25 biodiversity hotspots [1]. It is estimated that vascular plant

species richness in Costa Rica exceeds 5,000 spp. per 10,000 km2 [2]. Accordingly, primary tax-

onomy is an important part of biological research in Costa Rica for the purposes of both docu-

menting this biodiversity and informing conservation practices.

In addition to taxonomic diversity, measures of phylogenetic diversity (PD) provide an

important perspective on biodiversity and should be taken into consideration for setting con-

servation priorities [3]. Therefore, surveys documenting both species richness and molecular

phylogenetic diversity are needed. Furthermore, the use of a standard molecular marker as a
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DNA “barcode” is useful for species identification and taxonomic revision [4]. For example,

DNA barcoding surveys have revealed hidden biodiversity in the form of cryptic species in

butterflies in Costa Rica [5] and have been used to identify cryptic life-cycle stages in ferns

[6,7]. DNA barcodes are being increasingly integrated into biological surveys to document bio-

diversity at unprecedented scale, rate, and resolution [8–10].

Pteridophytes (i.e., ferns and lycophytes) are an important group of plants to study because

many new species are still being discovered in the Neotropics [11] and they play important

ecological roles in many ecosystems [12–15]. The pteridophytes of Costa Rica comprise c.
1,200 spp., accounting for one-quarter to one-third of the estimated richness of the Neotropics

(c. 3,000 spp. to 4,500 spp.) [11]. While the pteridophyte floras of some sites in Costa Rica are

well studied, such as La Selva Biological Station [16,17], other areas in the country have

received considerably less attention. We present here the results of surveys conducted over

three field seasons on the pteridophyte flora of the recently established Nectandra Cloud Forest

Reserve near San Ramon, Costa Rica. We also characterize the phylogenetic diversity at this

site and compare it with other pteridophyte floras that have recently been the focus of DNA

barcoding surveys.

Materials and methods

Study site

The Nectandra Cloud Forest Reserve (hereafter, “Nectandra”; 10˚11’ N, 84˚31’ W) is located at

1,000 m to 1,200 m a.s.l. on the Atlantic slope of the Cordillera de Tilarán, Alajuela Province (Fig

1A). It encompasses 158 ha of premontane rainforest (life zones follow Holdridge [18]) and is

managed by the Nectandra Institute, whose mission is to conserve and restore cloud forest in

northern Costa Rica through grassroots outreach [19]. Approximately three-quarters of Nectan-

dra is primary forest with>98% canopy cover; the remaining area comprises naturally regenerat-

ing former coffee and Dracaena plantations (Fig 1B and 1C). Two permanent streams and four

seasonal drainages pass through the reserve and empty into the Balsa river. Most of the surround-

ing land is used for cattle pasture or other agriculture. Previous biological surveys of Nectandra

indicate that it has a rich herpetofauna [20] and is home to at least 188 spp. of bryophytes [21].

Climate at Nectandra is characterized by extremely high frequency of cloud cover through-

out the year. Rainfall peaks during the wet season from November to February. Mean annual

precipitation is 3,000 mm yr-1 to 3,500 mm yr-1, with c. 80% fog-saturated days.

Field survey

We carried out surveys of pteridophytes over three field seasons (January 2008, 2011, and

2013; 37 days of sampling total). Most specimens were collected along trails through the

reserve. Epiphytes were collected from fallen trees or tree branches, or up to c. 2 m on tree

trunks. Permits for collection were obtained from the Costa Rican government (SINAC No.

04941 and Cites 2014-CR 1006/SJ [#S 1045]). The first set of voucher specimens was deposited

at UC, with duplicates at CR, GH, TI, and the private collection at Nectandra. Herbarium

codes follow Thiers [25]. Leaf tissue was preserved on silica gel for DNA extraction. Spores of

selected taxa were observed with a standard compound light microscope.

Taxonomy

We consulted relevant floras [26–28] and recent monographs [29–35] for species identifica-

tion. In some cases, we also consulted taxonomic experts on particular groups (e.g., grammitid

ferns). Genus-level and higher taxonomy follows Pteridophyte Phylogeny Group I [36].
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Fig 1. Location of the Nectandra Cloud Forest Reserve (“Nectandra”). (a) Map of Costa Rica showing location of Nectandra (yellow diamond) and other protected

areas that have been surveyed for pteridophytes (black dots). Other protected areas include Alberto Manuel Brenes Biological Reserve, La Selva Biological Station,

Monteverde Cloud Forest Reserve, San Luis Biological Reserve, and the upper watershed of the Savegre River in the Los Santos Forest Reserve. Elevation data downloaded

from the CGIAR SRTM 90m digital elevation database [22] using the getData function in the R package raster [23]. Map created using ggplot2 [24]. (b) Aerial photo of

Nectandra (c. 1992). Nectandra consists of three parcels of land: The original parcel is in white (c. 80% primary forest), with areas added later in red (“Ocotea” parcel,

primary forest) and blue (“Persea” parcel, secondary forest). Note extreme deforestation outside of protected areas. Reprinted under a CC BY license with permission from

Instituto Geográfico Nacional de Costa Rica, original copyright 1992. (c) Example of interior of primary forest at Nectandra. Photo courtesy of Evelyne Lennette, reprinted

under a CC BY license with permission.

https://doi.org/10.1371/journal.pone.0241231.g001
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DNA sequencing and phylogenetic analysis

DNA was extracted with the DNEasy Plant Mini kit following the manufacturer’s protocol

(Qiagen). We generally sampled one species per taxon from Nectandra for morphologically

distinct taxa, and up to five specimens per taxon for taxa that are more difficult to identify

using standard keys [26,27] (e.g., Megalastrum, Didymoglossum). We selected the plastid rbcL
gene as a barcode marker because it has universal primers available for ferns [37] and has per-

formed relatively well for species identification in ferns relative to other candidate barcode loci

[6,38,39]. We amplified rbcL using PCR primers and thermocycler settings of [37] and verified

amplification success by gel electrophoresis in 1% TAE. We purified PCR products with Exo-

STAR (GE Healthcare) and conducted cycle sequencing using the Big Dye Terminator v3.1

Cycle Sequencing Kit (ThermoFisher) with two internal primers, ESRBCL654R and

ESRBCL628F [37], in addition to the amplification primers. We imported the resulting AB1

trace files into Geneious [40], assembled contigs, and exported the consensus sequences in

FASTA format. We downloaded rbcL sequences from GenBank if available for any remaining

taxa that could not be successfully sequenced (S1 Table). We generated an alignment using

MAFFT [41]. For phylogenetic analysis by maximum likelihood, all sites were included in a

single partition (no partitioning was specified). We evaluated models of DNA sequence evolu-

tion with IQ-TREE [42] (“-m TEST”), which is similar to the model selection process imple-

mented in jModelTest [43]. The Bayesian Information Criterion (BIC) was used to select the

best model (IQ-TREE default setting), which was then used by IQ-TREE to infer the tree.

Node support was assessed with 1,000 ultra-fast bootstrap (UFboot) [42] and 1,000 Shimo-

daira-Hasegawa-like approximate likelihood ratio test (SH-aLRT) replicates [44] in IQ-TREE.

For a small number of genera that were not supported as monophyletic in the original phylo-

genetic analysis, we also downloaded all available rbcL sequences for closely related taxa (at the

family or subfamily level) from GenBank, aligned these in combination with the newly gener-

ated sequences from Nectandra with MAFFT, and inferred a tree using FastTree on default set-

tings [45,46]. Molecular analysis was performed under permits R-CM-RN-001-

2014-OT-CONAGEBIO and R-CM-RN-002-2017-OT-CONAGEBIO.

Statistical analysis

To assess the completeness of sampling, we constructed species incidence rarefaction-extrac-

tion curves using the iNEXT package [47]. Number of collection days was used as the sampling

unit.

We compared the number of species at Nectandra with other protected sites in Costa Rica

by conducting a literature survey.

We assessed the utility of rbcL for species identification by calculating minimum interspe-

cific distances as follows. We first calculated all raw interspecific distances in the rbcL align-

ment using the “dist.dna” function in the APE package [48], then extracted the minimum

interspecific distance for each species using custom scripts. Species sharing identical rbcL
sequences with at least one other species (interspecific distance of zero) were considered fail-

ures, i.e., not possible to identify with this marker.

To better characterize observed phylogenetic diversity, we compared the phylogenetic

diversity of the pteridophytes of Nectandra with two other pteridophyte floras that have been

the subject of DNA barcoding using rbcL: Japan [39,49] and the islands of Moorea and Tahiti,

French Polynesia [6]. To ensure that phylogenetic distances were comparable across datasets,

we generated a combined rbcL alignment for all species from the three floras together using

MAFFT. We then subset the alignment to the species in each flora and calculated minimum

interspecific distances per flora as described above.
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All analyses were carried out using R v 3.6.1 [50].

Results

Taxonomic survey

Our surveys resulted in 320 individuals representing 176 spp., 69 genera, and 22 families of

pteridophytes (S2 Table). Two species included multiple varieties (two each). 169 spp. (94.9%)

are ferns and 7 spp. (3.9%) are lycophytes. Most taxa are either epiphytic (n = 94; 52.8%) or ter-

restrial (n = 74; 41.6%) (Table 1). All taxa are native, except for Macrothelypteris torresiana
(Gaudich.) Ching (native to Africa and Asia; introduced in the Americas), which was excluded

from the comparison of richness across sites and DNA barcode analysis.

The genera with the most species were Elaphoglossum (14 spp.), Diplazium (12 spp.), Hyme-
nophyllum (12 spp.), and Asplenium (10 spp.). Families with the most species were Dryopteri-

daceae (28 spp.), Polypodiaceae (28 spp.), and Hymenophyllaceae (25 spp.).

Three taxa could not be matched to any known species: Polyphlebium sp1 (Nitta 123 and

Nitta 2378), Campyloneurum sp1 (Nitta 2308), and Megalastrum sp1 (Nitta 727).

Our literature survey identified five other protected areas in mainland Costa Rica that have

been surveyed for pteridophytes [17,52–55] (Fig 1, Table 2). The site with the highest species

richness is Alberto Manuel Brenes Biological Reserve (281 spp.), with Nectandra (175 spp.) the

third-highest after La Selva Biological Station (197 spp.; Table 2). Nectandra has by far the

most species per hectare (1.11), with San Luis Biological Reserve second-highest (0.16 species

per hectare; Table 2).

The collection curve did not reach an asymptote (Fig 2). Extrapolation of the curve indi-

cates that asymptotic species richness may approach 253 spp. (95% confidence interval 222

spp. to 305 spp.).

Table 1. Growth habits of ferns and lycophytes at the Nectandra Cloud Forest Reserve, Costa Rica. Count includes

taxa at the species and infraspecies (variety or subspecies) levels (n = 178 total).

n (percent of totala)

Climbing or clambering 5 (2.8%)

Epipetric 19 (10.7%)

Epiphytic 94 (52.8%)

Terrestrial 74 (41.6%)

aPercentages do not sum to 100% because some taxa have multiple growth habits.

https://doi.org/10.1371/journal.pone.0241231.t001

Table 2. Species richness of pteridophytes at protected areas in Costa Rica. A single non-native species, Macrothelypteris torresiana, was excluded from calculations for

Nectandra.

Elevation

(m)

Life zone typea Area

(ha)

Richness (no.

spp.)

Richness per area (no.

spp. per ha)

Reference

Alberto Manuel Brenes Biological Reserve ca. 1,520 Premontane rainforest 7,800 281 0.04 [54]

La Selva Biological Station 35–130 Tropical wet forest 1,533 197 0.13 [17]

Monteverde Cloud Forest Reserve 1,500–1,640 Lower montane wet forest 3,800 147 0.04 [52]

Nectandra Cloud Forest Reserve 1,000–1,200 Premontane rainforest 158 175 1.11 this study

San Luis Biological Reserve 540–855 Transition between lowland tropical wet

forest and premontane wet forest

251 39 0.16 [55]

Upper watershed of the Savegre River in

the Los Santos Forest Reserve

2,000–3,491 Montane forest to paramo 10,000 123 0.01 [53]

aLife zones follow Holdridge [18].

https://doi.org/10.1371/journal.pone.0241231.t002
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Phylogenetic analysis

We generated 186 new rbcL sequences of pteridophytes from Nectandra, representing 168 taxa

(S1 Table). Mean length of the newly generated sequences was 1,292 bp ± SD 96 bp. rbcL could

not be sequenced for 10 taxa, and only partial sequences (ca. 3’ or 5’ half of rbcL) could be

obtained for three taxa. Difficulty in sequencing of these samples may be due to degraded con-

dition of DNA or mismatched primer sequences. Of the taxa that we were unable to newly

sequence, sequences of two taxa from specimens from Nectandra and three taxa from speci-

mens from other areas were available on GenBank (S1 Table). In total, our rbcL sampling

included 173 taxa (97.2%) of pteridophytes occurring at Nectandra.

The rbcL alignment was 1,309 bp long including 591 parsimony-informative sites and 191

sequences. The GTR+I+G4 model was selected for ML phylogenetic analysis according to BIC

(the same model was also selected by AIC and corrected AIC).

The rbcL phylogeny (S1 Fig) was generally in agreement with recently published plastid

phylogenies [37,56–58] at the family level and above, and families sensu PPGI [36] were mono-

phyletic. One exception was Osmundaceae sister to Gleicheniaceae (SH-aLRT <50%; UFboot

92%), which may be due to poor sampling; we could obtain only a 614 bp rbcL fragment from

the sole osmundaceous species at our study site. Some internal nodes had weak support (e.g.,

Cyatheales [SH-aLRT 64.7%; UFboot 92%], Polypodiidae [leptosporangiates; SH-aLRT<50%;

UFboot 87%]). It should be noted that IQ-TREE UFboot support values are not analogous to

traditional bootstrap values; only nodes receiving SH-aLRT> = 80% and UFboot> = 95%

should be considered reliable [59]. As the purpose of this study was not to robustly infer phy-

logeny across all ferns and lycophytes, we do not discuss such deep relationships further.

0

100

200

300

0 50 100 150

Sampling units (days)

R
ic

hn
es

s 
(n

o.
 s

pp
.)

Fig 2. Interpolation (solid line) and extrapolation (dashed line) of species richness of pteridophytes at Nectandra

Cloud Forest Reserve, Costa Rica. Point at transition from solid to dashed line indicates observed richness. Gray

shading indicates 95% confidence interval.

https://doi.org/10.1371/journal.pone.0241231.g002

PLOS ONE A taxonomic and molecular survey of the pteridophytes of the Nectandra Cloud Forest Reserve, Costa Rica

PLOS ONE | https://doi.org/10.1371/journal.pone.0241231 November 18, 2020 6 / 14

https://doi.org/10.1371/journal.pone.0241231.g002
https://doi.org/10.1371/journal.pone.0241231


A small number of genera were found to be non-monophyletic but lacked strong support.

Sphaeropteris brunei (H. Christ) R.M. Tryon is nested within Cyathea as the sister to Cyathea
bicrenata Liebm. (SH-aLRT 79.6%; UFboot 83%). Stenogrammitis limula (Christ) Labiak is

nested within Lellingeria as the sister to Lellingeria hombersleyi (Maxon) A.R. Sm. (SH-aLRT

<50%; UFboot 87%). These were resolved in their expected genera in broadly sampled trees

using all available rbcL sequences on GenBank (S2 Fig and S3 Fig, respectively), so their irregu-

lar placement in the Nectandra rbcL tree appears to be an artifact of low sampling rather than

poor sequence quality or misidentification.

Sampling of multiple specimens per species for taxa that are morphologically difficult to dis-

tinguish revealed several non-monophyletic species (S1 Fig). Megalastrum apicale R.C. Moran &

J. Prado, M. atrogriseum (C. Chr.) A.R. Sm. & R.C. Moran, and M. longipilosum A. Rojas are

closely related (SH-aLRT 92%; UFboot 100%), and the monophyly of each lacks support. Dipla-
zium carnosum Christ is non-monophyletic with respect to D. urticifolium Christ and D. macro-
phyllum Desv., but this and most other relationships within Diplazium lacked support.

Didymoglossum ekmanii (Wess. Boer) Ebihara & Dubuisson is nested within, and very closely

related to D. kapplerianum (J.W. Sturm) Ebihara & Dubuisson (SH-aLRT 100%; UFboot 100%).

Barcode analysis

The pteridophyte flora of Nectandra includes 31 taxa (18%) that share identical rbcL sequences

with at least one other taxon. This failure rate is higher than that of the pteridophytes of

Moorea and Tahiti (4%), but lower than Japan (22%; Fig 3).

Discussion

Here, we present to our knowledge the first combined taxonomic and molecular survey of pte-

ridophytes of a protected area in Costa Rica. We place our results in a regional and global con-

text by comparing this flora with other protected areas in Costa Rica and two other sites that

have been the focus of DNA barcoding: Tahiti and Japan.

Taxonomic diversity

Nectandra has the third-highest species richness of protected areas in Costa Rica with data

available for ferns and lycophytes, and by far the greatest number of species per hectare

(Table 2). While the number of species per hectare is not a fair measure of biodiversity per se

as the species-area curve is not linear [60], it is useful to assess the effectiveness of a given pro-

tected area. Clearly, Nectandra is highly effective at protecting a large number of pteridophyte

species given its area. Furthermore, the collection curve indicates that additional, unsampled

species may be present (Fig 2), adding to the value of this conservation area. A recent survey of

the bryophytes of Nectandra found a similar number of species (188 spp.) and also suggested

unsampled species remained due to the shape of the collection curve [21].

One reason for the high species richness at Nectandra may be its elevation (1,000 m to

1,200 m). Species richness of pteridophytes in the tropics generally reaches a maximum at

mid-elevations on mountains, which is thought to be due to a combination of high humidity

and moderate temperature [61]. Plot-based surveys of pteridophytes along elevational gradi-

ents in Costa Rica spanning c. 100 m to 3,000 m have found maximum richness at 1,000 m to

1,200 m [62,63]. Another possible explanation is the presence of secondary forest and reserve

edges, which may contribute additional species that would otherwise not occur in primary for-

est at this elevation (i.e., the “edge effect” [64]). Nectandra has a high edge to area ratio due to

its small size, and edge effects have been demonstrated for pteridophytes in Mexican montane

forests [65]. While we did not collect data to specifically test this hypothesis, the number of
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taxa restricted to edges at Nectandra is probably no greater than c. 10 spp. (J. Nitta, pers. obs.),

and only one non-native species (M. torresiana) was observed occupying disturbed areas. Fur-

thermore, the high number of epiphytes (the most common growth form; Table 1) indicates

that high humidity may support large numbers of species at Nectandra. Taken together, these

observations suggest effect of elevation is likely more important than edge effects.

Unidentified taxa and putative species complexes

Of the unidentified taxa, two are likely hybrids between distinct species. Polyphlebium sp1

(Nitta 123 and Nitta 2378) shares very similar rbcL sequences with Polyphlebium capillaceum
(L.) Ebihara & Dubuisson but differs from this species by having expanded laminae (vs. lami-

nae reduced to a few cells on either side of the veins) and growing on rocks in stream beds (vs.

growing epiphytically on tree ferns). Polyphlebium sp1 has 32 spores per sporangium, a condi-

tion that often indicates asexual reproduction via apogamy [66]. This may allow it to repro-

duce by spores despite not being able to complete normal meiosis. To our knowledge, a count

of 32 spores per sporangium has not been previously reported from Polyphlebium, and more

detailed study is needed to confirm the reproductive mode of this taxon. Campyloneurum sp1

(Nitta 2308) matches in rbcL exactly with Campyloneurum angustifolium (Sw.) Fée, but differs

in morphology from C. angustifolium at Nectandra (Nitta 782) by having wider fronds (c. 1.5

cm. vs. c. 0.75 cm in C. angustifolium) and more rows of sori between the costa and the margin

(3–4 vs. 1–2 in C. angustifolium). Clear, misshapen spores were observed in Campyloneurum
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Fig 3. Minimum interspecific rbcL distances for selected pteridophyte floras. (a) Nectandra, (b) Moorea and Tahiti, (c) Japan (all species), and (d) Japan

(sexual diploids only). Red bar indicates interspecific distance of zero, i.e., species that cannot be distinguished using rbcL.

https://doi.org/10.1371/journal.pone.0241231.g003
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sp1, whereas C. angustifolium is a sexual diploid (2n = 72) with oblong spores [67]. The chloro-

plast is generally maternally inherited in ferns [68–70]. Therefore, it is likely that each of these

taxa is a hybrid between the species with which they share rbcL as the mother and another

unknown species as the father.

Megalastrum sp1 (Nitta 727) shares common aspects of morphology with M. longipilosum,

but the rbcL sequences of M. apicale, M. atrogriseum, and M. longipilosum are extremely simi-

lar. The low divergence in rbcL and non-monophyly of some taxa (M. apicale) are consistent

with the status of this group as a species complex, comprising several closely related diploid

taxa and their hybrids; alternatively, rbcL alone may be too slowly evolving to distinguish

recently diverged taxa in this group. Similarly, Diplazium also showed a high degree of mor-

phological diversity but extremely low divergence in rbcL sequences, and at least one species,

D. carnosum, appears to be non-monophyletic. Further study, in particular with regards to

ploidal level and reproductive mode, is needed to determine the status of Megalastrum and

Diplazium at Nectandra as possible species complexes. Also, sequencing of nuclear genes and

more variable plastid markers is needed to clarify relationships for the putative hybrids (Poly-
phlebium sp1 and Campyloneurum sp1) as well as these putative species complexes.

Molecular diversity and DNA barcode suitability

Unlike animals, there is no single DNA barcode available for plants that works to reliably iden-

tify species across all taxonomic groups [71]. rbcL has relatively high phylogenetic informative-

ness in ferns and lycophytes at the species level and is one of the most frequently sequenced

plastid genes in molecular systematic studies of pteridophytes. In previous comparisons with

other common plant barcode markers in pteridophytes, rbcL performs better than trnH-psbA
and comparably with matK [6,38,39]. However, universal primers for matK in pteridophytes

are lacking [38]. rbcL therefore is a reasonable choice for a single barcode marker in pterido-

phytes. However, there have been relatively few studies comparing the performance of rbcL as

a barcode marker across different pteridophyte floras.

We find that the pteridophytes of Nectandra have a species identification failure rate inter-

mediate between that of Moorea and Tahiti (French Polynesia) and Japan (Fig 3). The distri-

bution of minimum interspecific distances may reflect the biogeographic history of each

region. Costa Rica and Japan are both mainland areas (or formerly connected with the main-

land in the case of Japan), whereas the islands of French Polynesia are extremely isolated and

have never been connected to a continent. It is likely that more species in French Polynesia are

recent immigrants that have mostly evolved elsewhere, compared to more species that have

evolved in situ in Costa Rica and Japan. This would result in the observed distribution of high

interspecific divergences for species from French Polynesia and low interspecific divergences

for species in Costa Rica and Japan.

Furthermore, the high failure rate in Japan is likely due to a high rate of apogamy combined

with the taxonomic practice of splitting apogamous and sexual forms into separate species

[49]. When only sexual diploids are included, the failure rate in Japan drops to 7% and the dis-

tribution of minimum interspecific distances more closely resembles that of Nectandra (Fig 3).

The patterns identified here show that DNA barcoding strategies in different areas may

need to take into account the biogeographical history of the study site. Whereas rbcL alone

may be largely sufficient in oceanic islands like French Polynesia, a second, more variable bar-

code marker such as trnLF [72] or matK [38] is probably needed to improve species identifica-

tion rates of recently diverged taxa in continental areas such as Japan or Costa Rica. The

second marker need not have universal primers, since rbcL will indicate genus or family, and

primers for the second marker can then be selected appropriately.
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Conclusions

The Nectandra Cloud Forest Reserve is clearly an important site for biodiversity of ferns and

lycophytes in Costa Rica, harboring a high number of species for its relatively small area. Our

surveys have already revealed multiple taxa that appear to be new to science, and more likely

remain to be discovered. We demonstrated that rbcL can be used to reliably distinguish species

in c. 82% of cases at Nectandra. This will enable future studies to investigate the ecology of neo-

tropical pteridophytes in more depth, particularly with regards to the gametophytic phase.

Other studies using rbcL as a DNA barcode to identify fern gametophytes to species have

revealed particular clades and morphologies that tend to occur long distances from conspecific

sporophytes [6,7], but such patterns have yet to be observed in the Neotropics. We hope our

study will lead to more molecular ecological research incorporating field observations of game-

tophytes and contribute to the systematics of neotropical pteridophytes.
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doideae) including all available rbcL sequences on GenBank and newly sequenced taxa
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port values computed with the Shimodaira-Hasegawa test; values less than 50% not shown.

For phylogram on right side, scale bar shows expected number of changes per site. Numbers
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cated in memory of Álvaro Ulgade, father of the Costa Rican national park system, co-founder

of Nectandra, and an inspiration to all those who seek to understand and protect biodiversity.

Author Contributions

Conceptualization: Joel H. Nitta, Alan R. Smith.

Data curation: Joel H. Nitta.

Formal analysis: Joel H. Nitta, Alan R. Smith.

Funding acquisition: Atsushi Ebihara.

Investigation: Joel H. Nitta.

Methodology: Joel H. Nitta, Alan R. Smith.

Resources: Atsushi Ebihara.

Visualization: Joel H. Nitta.

Writing – original draft: Joel H. Nitta.

Writing – review & editing: Joel H. Nitta, Atsushi Ebihara, Alan R. Smith.

References
1. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conserva-

tion priorities. Nature. 2000; 403: 853–858. https://doi.org/10.1038/35002501 PMID: 10706275

2. Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H. Global centers of vascular plant diversity. Nova Acta

Leopoldina NF. 2005; 92: 61–83.

3. Faith DP. Conservation evaluation and phylogenetic diversity. Biological Conservation. 1992; 61: 1–10.

https://doi.org/10.1016/0006-3207(92)91201-3

4. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Pro-

ceedings of the Royal Society of London B Biological Sciences. 2003; 270: 313–321. https://doi.org/10.

1098/rspb.2002.2218 PMID: 12614582

PLOS ONE A taxonomic and molecular survey of the pteridophytes of the Nectandra Cloud Forest Reserve, Costa Rica

PLOS ONE | https://doi.org/10.1371/journal.pone.0241231 November 18, 2020 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241231.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241231.s005
https://doi.org/10.1038/35002501
http://www.ncbi.nlm.nih.gov/pubmed/10706275
https://doi.org/10.1016/0006-3207%2892%2991201-3
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1098/rspb.2002.2218
http://www.ncbi.nlm.nih.gov/pubmed/12614582
https://doi.org/10.1371/journal.pone.0241231


5. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD. DNA barcodes distinguish species of

tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America.

2006; 103: 968–971. https://doi.org/10.1073/pnas.0510466103 PMID: 16418261

6. Nitta JH, Meyer J-Y, Taputuarai R, Davis CC. Life cycle matters: DNA barcoding reveals contrasting

community structure between fern sporophytes and gametophytes. Ecological Monographs. 2017; 87:

278–296. https://doi.org/10.1002/ecm.1246

7. Ebihara A, Yamaoka A, Mizukami N, Sakoda A, Nitta JH, Imaichi R. A survey of the fern gametophyte

flora of Japan: Frequent independent occurrences of noncordiform gametophytes. American Journal of

Botany. 2013; 100: 735–743. https://doi.org/10.3732/ajb.1200555 PMID: 23510760

8. Janzen DH, Hallwachs W. DNA barcoding the Lepidoptera inventory of a large complex tropical con-

served wildland, Area de Conservacion Guanacaste, northwestern Costa Rica. Genome. 2016; 59:

641–660. https://doi.org/10.1139/gen-2016-0005 PMID: 27584861

9. Delrieu-Trottin E, Williams JT, Pitassy D, Driskell A, Hubert N, Viviani J, et al. A DNA barcode reference

library of French Polynesian shore fishes. Scientific Data. 2019; 6: 114. https://doi.org/10.1038/

s41597-019-0123-5 PMID: 31273217

10. Telfer AC, Young MR, Quinn J, Perez K, Sobel CN, Sones JE, et al. Biodiversity inventories in high

gear: DNA Barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodiversity Data

Journal. 2015; 3: e6313. https://doi.org/10.3897/BDJ.3.e6313 PMID: 26379469

11. Almeida TE, Salino A. State of the art and perspectives on neotropical fern and lycophyte systematics.

Journal of Systematics and Evolution. 2016; 54: 679–690. https://doi.org/10.1111/jse.12223

12. George LO, Bazzaz FA. The fern understory as an ecological filter: Emergence and establishment of

canopy-tree seedlings. Ecology. 1999; 80: 833–845. https://doi.org/10.1890/0012-9658(1999)080

[0833:TFUAAE]2.0.CO;2

13. Coomes DA, Allen RB, Bentley WA, Burrows LE, Canham CD, Fagan L, et al. The hare, the tortoise

and the crocodile: The ecology of angiosperm dominance, conifer persistence and fern filtering. Journal

of Ecology. 2005; 93: 918–935. https://doi.org/10.1111/j.1365-2745.2005.01012.x

14. Schuettpelz E, Trapnell DW. Exceptional epiphyte diversity on a single tree in Costa Rica. Selbyana.

2006; 27: 65–71.

15. Mueller-Dombois D, Boehmer HJ. Origin of the Hawaiian rainforest and its transition states in long-term

primary succession. Biogeosciences. 2013; 10: 5171–5182. https://doi.org/10.5194/bg-10-5171-2013

16. Grayum MH, Churchill HW. An introduction to the pteridophyte flora of Finca La Selva, Costa Rica.

American Fern Journal. 1987; 77: 73–89. https://doi.org/10.2307/1547496

17. Organización para Estudios Tropicales. Lista de Plantas Vasculares de La Selva, versión Feb. 2017.

In: La Selva Florula Digital [Internet]. 2019 [cited 2019 Sep 3]. Available from: https://sura.ots.ac.cr/

florula4/index.php.
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63. Karger DN, Kluge J, Krömer T, Hemp A, Lehnert M, Kessler M. The effect of area on local and regional

elevational patterns of species richness. Journal of Biogeography. 2011; 38: 1177–1185. https://doi.

org/10.1111/j.1365-2699.2010.02468.x

64. Leopold A. Game management. New York: Scribner; 1933.

65. Silva VL, Mehltreter K, Schmitt JL. Ferns as potential ecological indicators of edge effects in two types

of Mexican forests. Ecological Indicators. 2018; 93: 669–676. https://doi.org/10.1016/j.ecolind.2018.

05.029

66. Braithwaite AF. A new type of apogamy in ferns. New Phytologist. 1964; 63: 293–305. https://doi.org/

10.1111/j.1469-8137.1964.tb07383.x

67. León B. A taxonomic revision of the fern genus Campyloneurum (Polypodiaceae). Ph.D. Thesis, Aarhus

University. 1992.

68. Gastony GJ, Yatskievych G. Maternal inheritance of the chloroplast and mitochondrial genomes in chei-

lanthoid ferns. American Journal of Botany. 1992; 79: 716–722. https://doi.org/10.1002/j.1537-2197.

1992.tb14613.x

69. Vogel JC, Russell SJ, Rumsey FJ, Barrett JA, Gibby M. Evidence for maternal transmission of chloro-

plast DNA in the genus Asplenium (Aspleniaceae, Pteridophyta). Botanica Acta. 1998; 111: 247–249.

https://doi.org/10.1111/j.1438-8677.1998.tb00704.x

70. Kuo L-Y, Tang T-Y, Li F-W, Su H-J, Chiou W-L, Huang Y-M, et al. Organelle genome inheritance in

Deparia ferns (Athyriaceae, Aspleniineae, Polypodiales). Frontiers in Plant Science. 2018; 9: 486.

https://doi.org/10.3389/fpls.2018.00486 PMID: 29755486

71. Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, et al. A

DNA barcode for land plants. Proceedings of the National Academy of Sciences. 2009; 106: 12794–

12797. https://doi.org/10.1073/pnas.0905845106 PMID: 19666622

72. de Groot GA, During HJ, Maas JW, Schneider H, Vogel JC, Erkens RHJ. Use of rbcL and trnL-F as a

two-locus DNA barcode for identification of NW-European ferns: An ecological perspective. PLoS ONE.

2011; 6: e16371. https://doi.org/10.1371/journal.pone.0016371 PMID: 21298108

PLOS ONE A taxonomic and molecular survey of the pteridophytes of the Nectandra Cloud Forest Reserve, Costa Rica

PLOS ONE | https://doi.org/10.1371/journal.pone.0241231 November 18, 2020 14 / 14

http://doi.org/10.5061/dryad.bnzs7h477
https://doi.org/10.15560/12.2.1859
https://doi.org/10.3732/ajb.91.10.1582
http://www.ncbi.nlm.nih.gov/pubmed/21652310
https://doi.org/10.1371/journal.pone.0024851
https://doi.org/10.1371/journal.pone.0024851
http://www.ncbi.nlm.nih.gov/pubmed/22022365
https://doi.org/10.1016/j.ympev.2016.09.003
http://www.ncbi.nlm.nih.gov/pubmed/27621129
https://doi.org/10.1093/molbev/mst024
http://www.ncbi.nlm.nih.gov/pubmed/23418397
https://doi.org/10.2307/2255763
https://doi.org/10.2307/2255763
https://doi.org/10.1111/j.1466-8238.2011.00653.x
https://doi.org/10.1111/j.1466-8238.2011.00653.x
https://doi.org/10.3732/ajb.93.1.73
https://doi.org/10.3732/ajb.93.1.73
https://doi.org/10.1111/j.1365-2699.2010.02468.x
https://doi.org/10.1111/j.1365-2699.2010.02468.x
https://doi.org/10.1016/j.ecolind.2018.05.029
https://doi.org/10.1016/j.ecolind.2018.05.029
https://doi.org/10.1111/j.1469-8137.1964.tb07383.x
https://doi.org/10.1111/j.1469-8137.1964.tb07383.x
https://doi.org/10.1002/j.1537-2197.1992.tb14613.x
https://doi.org/10.1002/j.1537-2197.1992.tb14613.x
https://doi.org/10.1111/j.1438-8677.1998.tb00704.x
https://doi.org/10.3389/fpls.2018.00486
http://www.ncbi.nlm.nih.gov/pubmed/29755486
https://doi.org/10.1073/pnas.0905845106
http://www.ncbi.nlm.nih.gov/pubmed/19666622
https://doi.org/10.1371/journal.pone.0016371
http://www.ncbi.nlm.nih.gov/pubmed/21298108
https://doi.org/10.1371/journal.pone.0241231

