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Biodiversity has typically been quantified using species richness, but this ignores evo-
lutionary history. Due to the increasing availability of robust phylogenies, methods 
have been developed that incorporate phylogenetic relationships into quantification 
of biodiversity. CANAPE (categorical analysis of neo- and paleo-endemism) is one 
such method that can provide insight into the evolutionary processes generating bio-
diversity. The only currently available software implementing CANAPE is Biodiverse, 
which is written in Perl and can be used either through a graphical user interface 
(GUI) or user-developed scripts. However, many researchers, particularly in the fields 
of ecology and evolutionary biology, use the R programming language to conduct 
their analyses. Here, we present canaper, a new R package (www.r-project.org) that 
provides functions to conduct CANAPE in R. canaper implements methods for 
efficient computation, including parallelization and encoding of community data as 
sparse matrices. The interface is designed for maximum simplicity and reproducibil-
ity; CANAPE can be conducted with two functions, and parallel computing can be 
enabled with one line of code. Our case study shows that canaper produces equiva-
lent results to Biodiverse and can complete computations on moderately sized datas-
ets quickly (<10 min to reproduce a canonical study). canaper allows researchers 
to conduct all analyses from data import and cleaning through CANAPE within R, 
thereby obviating the need to manually import and export data and analysis results 
between programs. We anticipate canaper will become a part of the toolkit for 
analyzing biodiversity in R.
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Introduction

Quantifying biodiversity is a major goal of ecology. The sim-
plest and most commonly used biodiversity metric is species 
richness (Diamond 1975). However, as all taxa are related to 
some degree by descent from a common ancestor, a thorough 
understanding of biodiversity is only possible by considering 
their evolutionary relationships. This became possible with 
the development of phylogenetic measures of biodiversity, 
such as phylogenetic diversity (PD; Faith 1992) and phylo-
genetic endemism (PE; Rosauer et al. 2009) (Box 1). Such 
analyses are becoming much more common due to the wide-
spread availability of robust molecular phylogenies and large 
spatial datasets (Thornhill et al. 2017, Mishler et al. 2020, 
Nitta et al. 2022).

One recently developed extension of PE is categorical anal-
ysis of neo-and paleo-endemism (CANAPE; Mishler et al. 
2014). CANAPE uses phylogenetic methods to give insight 
into evolutionary processes that produce centers of ende-
mism (areas with many narrow-ranged taxa; or in the phy-
logenetic sense, concentrations of narrow-ranged branches 
of the phylogeny). In theory, centers of endemism may arise 
via multiple processes. For example, previously widespread 
lineages may undergo extinction in all but a portion of their 
range, leading to paleo-endemism. Alternately, recently 
diverged lineages may only occur in a small area and lead to 
neo-endemism. It is also possible that a given area is home 
to a high concentration of both paleo- and neo-endemic 
lineages (mixed endemism). CANAPE involves analyzing 
observed patterns of PE in comparison with a null model to 
first infer whether an area is significantly high in PE, and then 
to classify those areas into centers of paleo-endemism, neo-
endemism, or mixed endemism. CANAPE is widely used 

(>50 publications in Google Scholar query for papers that 
cite Mishler et al. (2014) and mention ‘CANAPE’), and is a 
central component of the field of spatial phylogenetics.

Despite the popularity of CANAPE, it has so far only been 
implemented in one software package, Biodiverse (Laffan et al. 
2010). Biodiverse is written in Perl and comprises an analytical 
engine and a graphical user interface (GUI). While Biodiverse 
is convenient for non-coders because of its GUI, many ecolo-
gists and evolutionary biologists use R (https://www.r-proj-
ect.org) for their analyses (Lai et al. 2019). Until now, an R 
user who wanted to conduct CANAPE analysis as part of a 
broader R workflow needed to first clean raw data, export it to 
Biodiverse, conduct PD and PE analyses in Biodiverse, then 
import the results back into R for further analysis and visu-
alization. Also, prior to ver. 4, Biodiverse calculated the met-
rics needed to categorize endemism type but did not actually 
perform this categorization. Furthermore, the Biodiverse GUI 
alone does not currently support parallel processing, which is 
important for large datasets. Parallel processing and automa-
tion of Biodiverse analyses is only currently possible using Perl 
scripts. A set of R scripts is available to call Biodiverse Perl 
scripts from R (https://github.com/NunzioKnerr/biodiverse_
pipeline), but it is not an R package and does not conduct 
CANAPE within R.

Here, we present a new R package that implements 
CANAPE completely in R: canaper. We strove to make 
canaper simple to use and efficient. Parallel computing 
can be enabled with a single line of code. canaper has 
passed code review meeting the ‘silver’ standards for statisti-
cal software at rOpenSci (Boettiger et al. 2015), and is veri-
fied against a large number of unit tests (>99% coverage). All 
results are reproducible by setting the random seed generator 
in R, in both sequential and parallel computing modes.

Box 1: Glossary of terms.

 1) Community: A co-occurring set of species.
 2) Grid-cell: One of a set of spatial units each with equal area that together cover a region of interest; each grid-cell 

comprises a community. Often used synonymously with ‘site’.
 3) Community matrix: A 2-dimensional dataset with communties (grid-cells) on one axis and species on the other. 

canaper expects communities as rows and species as columns.
 4) Phylogenetic diversity (PD): The total branch length (including the root) connecting the species occurring in a given 

area (community or grid-cell), measured on an overall tree that includes all the species in the study (Faith 1992).
 5) Phylogenetic endemism (PE): Range weighted PD where the weight for each branch is the fraction of its overall range 

represented in the sample area (typically a grid-cell) (Rosauer et al. 2009).
 6) Relative phylogenetic diversity (RPD): The ratio of PD measured on the original tree vs. PD measured on a compari-

son tree with all branch lengths transformed to equal length (Mishler et al. 2014).
 7) Relative phylogenetic endemism (RPE): The ratio of PE measured on the original tree vs. PE measured on a compari-

son tree with all branch lengths transformed to equal length (Mishler et al. 2014).
 8) Neoendemic: An area with a high concentration of short, range-restricted branches; may be due to processes such as 

recent speciation (radiation).
 9) Paleoendemic: An area with a high concentration of long, range-restricted branches; may be due to processes such as 

extinction or colonization by distantly relatives from outside the study area.
10) Mixed endemic: An area with a mixture of short and long, range-restricted branches; may be due to multiple processes.
11) Super endemic: An area with mixed endemism that is statistically highly significant.
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Installation

The stable version of canaper can be installed from CRAN, 
and the latest development version from r-universe (https://r-
universe.dev/).
# Stable version
install.packages("canaper")
# Development version
install.packages("canaper", repos = 
"https://ropensci.r-universe.dev")

Input data format

Community data

Community data is provided as a data frame or matrix, with 
species as columns and communities (also referred to as 
‘sites’ or ‘grid-cells’) as rows. Metrics of phylogenetic diver-
sity including CANAPE can be measured at any taxonomic 
level, but for simplicity we use ’species’ here. In this case, 
the data must include both row names and column names. 
Community data may also be input as a tibble, in which case 
site names must be indicated in a dedicated column (default 
column name "site"), rather than row names since tibbles 
lack row names. Community data may be either presence-
absence data (0 or 1 s) or abundance data (integers > = 0). 
However, calculations of PD and PE for CANAPE use only 
presence-absence information (i.e. no abundance weighting 
is used), so identical results will be obtained whether the 
input data is abundance or abundance that has been con-
verted to presence-absence. Community data is typically 
loaded using read.csv(), readr::read_csv(), 
or other functions that can import rectangular data. The 
points2comm() function of the phyloregion 

package may be used to convert raw occurrence data (e.g. 
latitude and longitude of species occurrences) to a commu-
nity matrix (Daru et al. 2020).

Phylogeny

The ape R package (https://CRAN.R-project.org/
package=ape) is used to handle phylogenies, which are stored 
as lists of the class "phylo". Phylogenies are required to 
have branch lengths > = 0, but are not required to be fully 
bifurcating. Phylograms, chronograms, or cladograms may 
be used. Phylogenies can be loaded with the ape::read.
tree() function.

Analysis workflow

The entire CANAPE workflow can be run with two func-
tions, cpr_rand_test() and cpr_classify_
endem(). However, internally this entails several steps that 
the user should be aware of as follows (Fig. 1).

Calculate observed values

First, the input phylogeny is scaled so the sum of all branch 
lengths is 1 and observed phylogenetic diversity (pd_obs) 
and phylogenetic endemism (pe_obs) are calculated (Box 
1). Next, an alternative phylogeny (also referred to as the 
‘comparison tree’) is constructed that has non-zero branch 
lengths set to a constant value (canaper arbitrarily uses 
1), then rescaled so the sum of all branch lengths is 1. PD 
and PE are then calculated on the alternative phylogeny 
(pd_alt, pe_alt). Relative PD and PE, the ratio of pd_
obs to pd_alt and pe_obs to pe_alt respectively, are 
then calculated (RPD, RPE; Box 1). However, the statistical 

Figure 1. canaper workflow and functions to conduct categorical analysis of neo- and paleo-endemism (CANAPE). Input data are a 
community matrix and phylogeny. First, the user selects a randomization algorithm and its settings, with optional assistance from the 
cpr_iter_sim() function. Next, a set of random communities are generated, various metrics (e.g. phylogenetic endemism, relative 
phylogenetic endemism) are calculated for the input community and each random community, and the rank (p-value) of each observed 
metric is compared to those of the random communities by the cpr_rand_test() function. Finally, endemism types are categorized 
on the basis of the ranked metrics with the cpr_classify_endem() function. For details on metrics and classification, see ‘Analysis 
workflow’. For details on functions, see ‘Major functions’.
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significance of any of these metrics cannot be determined 
from observed values alone.

Generate random communities

PD (and by extension, PE) will increase with taxon richness, 
since adding a new taxon samples more branches of the tree. 
To determine the statistical significance of the calculated 
metrics, the observed value is compared to a distribution 
of values obtained from a set of random communities. The 
random communities are generated by a randomization algo-
rithm that shuffles the original data.

Since the randomization algorithm influences the range of 
reference (expected) values, the choice of randomization algo-
rithm is likely to have a large effect on the results. As there 
is no single ‘correct’ algorithm, we have opted to provide the 
user with a wide range of options by supporting random-
ization algorithms included in the vegan package (https://
cran.r-project.org/package=vegan). vegan includes > 30 
randomization algorithms, but not all are appropriate for 
CANAPE. Recommended algorithms include swap (Gotelli 
and Entsminger 2003) and curveball (Strona et al. 
2014). These algorithms preserve the number of sites occu-
pied by each species and the richness of each site, and both 
produce results comparable to one commonly used random-
ization algorithm in Biodiverse called rand_structured 
(see ‘Example: Australian Acacia’). curveball has been 
shown to be more computationally efficient than swap, but 
we are unaware of any studies comparing the effects on PD or 
CANAPE between the two.

We have also provided a method for users to provide a 
custom, user-defined randomization algorithm using the 
vegan framework. This may be appropriate if, for example, 
the community matrix includes a very wide area and it is 
desired to restrict randomizations to subsets of the area.

Calculate summary statistics

Once a randomization algorithm has been selected, random 
communities are generated for a number of replicates set 
by the user, and a set of summary statistics are computed 
(Supporting information). Summary statistics include the 
mean and standard deviation of PD, RPD, PE and RPE of 
the random communities and comparisons of observed val-
ues to the random communities including standard effect size 
and rank, which is used to calculate p-values.

Categorize endemism

The final step in CANAPE is to categorize endemism as 
described in Mishler et al. (2014). Briefly, this is done by com-
paring significance values of summary statistics calculated in 
the previous step (Supporting information). To be considered 
significantly endemic, a given grid-cell must first have signifi-
cantly high pe_obs or pe_alt or both (one-tailed test). 
If this is true, the grid-cell is classified into one of three non-
overlapping categories: if the grid-cell has significantly high 

or low RPE (two-tailed test), it is considered to be a center 
of paleo-endemism or neo-endemism, respectively; if RPE is 
not significant (but pe_obs, pe_alt, or both are), it is 
considered a center of mixed endemism. Centers of mixed 
endemism can be further divided based on p-value; if pe_
obs and pe_alt and both significant at the α = 0.01 level, 
the grid-cell may be considered a center of super-endemism 
(but not all studies make this distinction).

Major functions

cpr_rand_comm()

The cpr_rand_comm() function generates a single ran-
dom community. The first argument, comm, is a commu-
nity data frame (or matrix). The second, null_model, 
is the name of one of the predefined randomization algo-
rithms to use. The remainder of the arguments are particular 
to specific types of randomization algorithm. cpr_rand_
comm() is typically not called by the user directly, but is 
provided to help users select randomization algorithms and 
settings.

One feature to be aware of is that randomization algo-
rithms in vegan are classified as either binary or quan-
titative. Binary algorithms are designed for binary (i.e. 
presence-absence) data, and quantitative algorithms are 
designed for quantitative (i.e. abundance) data. Either type 
of algorithm will accept either type of data, but binary algo-
rithms will convert abundance data to binary and return a 
binary matrix (data frame).

As the calculations of PD and PE in canaper do not 
take into account abundance (i.e. no abundance weighting is 
used), identical results will be obtained by either using abun-
dance data or converting abundance data to binary before 
analysis. In this sense, the binary randomization algorithms 
are appropriate for CANAPE.

The following code illustrates use of cpr_rand_
comm() with a set of example data that comes with cana-
per, the test data from Phylocom (Webb et al. 2008).

library(canaper)

# Set a seed for reproducibility
set.seed(12345)

# The original data includes abundance
data(phylocom)
phylocom$comm
      sp1 sp10 sp11 sp12 sp13 sp14 sp15 
sp17 sp18 sp19 sp2 sp20 sp21 sp22
clump1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
clump2a 1 2 2 2 0 0 0 0 0 0 1 0 0 0
clump2b 1 0 0 0 0 0 0 2 2 2 1 2 0 0
clump4 1 1 0 0 0 0 0 2 2 0 1 0 0 0
even 1 0 0 0 1 0 0 1 0 0 0 0 1 0
random 0 0 0 1 0 4 2 3 0 0 1 0 0 1
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      sp24 sp25 sp26 sp29 sp3 sp4 sp5 
sp6 sp7 sp8 sp9
clump1 0 0 0 0 1 1 1 1 1 1 0
clump2a 0 0 0 0 1 1 0 0 0 0 2
clump2b 0 0 0 0 1 1 0 0 0 0 0
clump4 0 2 2 0 0 0 0 0 0 0 1
even 0 1 0 1 0 0 1 0 0 0 1
random 2 0 0 0 0 0 2 0 0 0 0
# Binary null model produces binary 
output
cpr_rand_comm(phylocom$comm, "swap", n_
iterations = 100)
       sp1 sp10 sp11 sp12 sp13 sp14 sp15 
sp17 sp18 sp19 sp2 sp20 sp21 sp22
clump1 1 0 0 0 0 0 0 1 1 0 1 0 0 0
clump2a 0 1 0 0 0 0 0 1 0 0 1 0 0 1
clump2b 1 1 0 1 0 1 0 0 0 0 1 0 0 0
clump4 1 0 1 0 0 0 0 1 0 1 1 0 1 0
even 1 0 0 0 0 0 0 1 1 0 0 1 0 0
random 1 0 0 1 1 0 1 0 0 0 1 0 0 0
      sp24 sp25 sp26 sp29 sp3 sp4 sp5 
sp6 sp7 sp8 sp9
clump1 0 0 0 1 1 0 0 1 0 0 1
clump2a 0 1 0 0 1 1 1 0 0 0 0
clump2b 0 0 0 0 1 1 0 0 0 0 1
clump4 0 0 0 0 0 0 1 0 0 1 0
even 1 0 1 0 0 0 0 0 1 0 1
random 0 1 0 0 0 1 1 0 0 0 0

cpr_iter_sim()

cpr_iter_sim() is not required for the CANAPE work-
flow, but is rather a diagnostic function for use with ran-
domization algorithms that work by exchanging cells of the 
community matrix such as swap (Gotelli and Entsminger 
2003) or curveball (Strona et al. 2014). Each such 
exchange is known as an ‘iteration’. It is generally impossible 
to know a priori how many iterations are needed to com-
pletely randomize a given matrix; this number depends on 
properties of the matrix and the randomization algorithm. 
Generally, larger matrices with more skew (overabundance of 
zeros) will require more iterations (Miklós and Podani 2004).
cpr_iter_sim() conducts successive exchanges and 

records the similarity between the original matrix and the 
randomized matrix at each iteration. The similarity values 
should initially decrease until an approximate minimum is 

reached; further iterations will only result in noise around this 
minimum. A number slightly larger than the smallest num-
ber of iterations needed to reach the approximate minimum 
value can then be used for randomizing the community. The 
following code demonstrates usage of cpr_iter_sim() 
with the Acacia dataset (Mishler et al. 2014) that comes with 
canaper. The Acacia dataset is relatively large (Table 1) and 
highly skewed (98.1% zeros).

set.seed(12345)

data(acacia)

# Conduct up to 100,000 iterations 
(swaps),
# recording similarity every 1000 
iterations
iter_sim_res <- cpr_iter_sim(
 comm = acacia$comm,
 null_model = "curveball",
 n_iterations = 100000,
 thin = 1000
)

# Inspect the output
iter_sim_res

# A tibble: 100 × 2
 iteration similarity
 <int> <dbl>
 1 1000 0.992
 2 2000 0.986
 3 3000 0.982
 4 4000 0.979
 5 5000 0.976
 6 6000 0.974
 7 7000 0.972
 8 8000 0.971
 9 9000 0.970
10 10000 0.969
# … with 90 more rows

It is useful to plot the output to identify the minimum 
number of iterations needed. Code to generate a plot with 
the ggplot2 package and its output are shown in the 
online Supporting information. The plot shows that the com-
munity matrix becomes maximally randomized after about 
40 000–50 000 iterations and that the original matrix and 
randomized matrix are about 96.5% similar.

cpr_rand_test()

The cpr_rand_test() function carries out calculation of 
observed values, generation of random communities, and cal-
culation of summary statistics as described above in ‘Analysis 
workflow’. The main arguments to this function are the input 
community and phylogeny, type of null model, and settings 

Table 1. Datasets in canaper.

Dataset n sites
n species 

(community matrix)
n species 

(phylogeny)

acacia 3037 508 510
biod_example 127 31 31
phylocom 6 25 32

The acacia dataset (Mishler  et  al. 2014) includes two outgroup 
taxa in the phylogeny that are not in the community matrix. The 
phylocom dataset (Webb et al. 2008) also includes more taxa in 
the phylogeny than the community matrix.
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for the null model. Any species that do not appear in both the 
community data frame and the phylogeny will be excluded 
from analysis. For a full list of null models to choose from, run 
?vegan::commsim(). It should be noted that the type of 
null model, number of random communities, and number of 
swapping iterations performed per random community (for 
swapping algorithms) all may strongly affect results of cpr_
rand_test() (or any metric that is based on comparison 
to a set of random communities; Gotelli 2001). While it is 
beyond the scope of this paper to provide a full discussion of 
null models in ecology, we have provided details about how to 
explore appropriate null model settings with canaper in the 
‘How many randomizations?’ vignette (https://docs.ropensci.
org/canaper/articles/how-many-rand.html).

The output is a data frame with communities as rows and 
summary statistics in columns. A large number of summary 
statistics, including all of those needed to calculate CANAPE, 
are produced. For a full explanation of all output columns, 
see Appendix S1 or run ?cpr_rand_test().

The following code demonstrates usage of cpr_rand_
test(), using the same example dataset as above.

set.seed(12345)
rand_test_results <- cpr_rand_test(
 phylocom$comm, phylocom$phy, null_
model = "curveball")

# Print a subset of the output columns
rand_test_results[, 1:9]

     pd_obs pd_rand_mean pd_rand_sd pd_
obs_z pd_obs_c_upper
clump1 0.3018868 0.4654717 0.03350120 
-4.882956 0
clump2a 0.3207547 0.4707547 0.03244554 
-4.623132 0
clump2b 0.3396226 0.4720755 0.03696370 
-3.583321 0
clump4 0.4150943 0.4683019 0.03374984 
-1.576527 3
even 0.5660377 0.4654717 0.03339369 
3.011528 100
random 0.5094340 0.4598113 0.03594522 
1.380507 89
 pd_obs_c_lower pd_obs_q pd_obs_p_upper 
pd_obs_p_lower
clump1 100 100 0.00 1.00
clump2a 100 100 0.00 1.00
clump2b 100 100 0.00 1.00
clump4 90 100 0.03 0.90
even 0 100 1.00 0.00
random 5 100 0.89 0.05

cpr_classify_endem()

The cpr_classify_endem() function classifies 
endemism types for the output of cpr_rand_test() 
as described above in ‘Analysis workflow’. The input is a 
data frame including the following columns calculated 

by cpr_rand_test(): pe_obs_p_upper (upper 
p-value comparing observed PE to random values), pe_alt_
obs_p_upper (upper p-value comparing observed PE on 
alternate tree to random values), rpe_obs_p_upper 
(upper p-value for RPE), and rpe_obs_p_lower (lower 
p-value for RPE). The output is the same data frame, with the 
column endem_type appended. Values of endem_type 
include paleo (paleoendemic), neo (neoendemic), not 
significant, mixed (mixed endemism), and super 
(super-endemic).

The following code demonstrates usage of cpr_clas-
sify_endem() with the output from cpr_rand_
test() (note that for this small example, not all possible 
types of endem_type are produced).

canape_results <- cpr_classify_
endem(rand_test_results)

# Look at the endem_type column
canape_results[, "endem_type", drop = 
FALSE]
         endem_type
clump1 not significant
clump2a not significant
clump2b not significant
clump4 not significant
even super
random mixed

In addition to cpr_classify_endem(), canaper 
includes the cpr_classify_signif() function for 
assessing significance level of PD, RPD, PE and RPE. Both 
cpr_classify_endem() and cpr_classify_
signif() take a data frame as their first argument and 
return a data frame as output, so they are ‘pipe friendly’, i.e. 
can be chained together using pipe operators (%>% or |>).

Parallel computing

Parallel computing is enabled with the future package, 
which has been designed to allow maximum flexibility 
in the parallel backend selected by the user (e.g. mul-
tiple cores on one machine, multiple remote machines, 
etc.). Parallelization is applied to the calculation of sum-
mary statistics for each random community, as there are 
potentially many random communities (typically > 100 
for a robust analysis, though this depends on the data-
set). To use parallel computing, no changes are needed 
for cpr_rand_test() etc. Rather, future is loaded 
(library("future")), then a parallel back-end is 
specified with plan(). The user is advised to consult the 
future website (https://future.futureverse.org/) for more 
information on specifying a parallel backend.

The following code demonstrates parallel computing.

library(future)
set.seed(12345)
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# Specify two cores running in parallel
plan(multisession, workers = 2)

# Usage of cpr_rand_test exactly the 
same as before
rand_test_results <- cpr_rand_test(
  phylocom$comm, phylocom$phy, null_
model = "curveball")

There will not be a noticeable decrease in computing 
time since this dataset is so small. However, parallelization 
can greatly decrease computing time for large datasets; more 
details are available in the ‘Parallel computing’ vignette 
(https://docs.ropensci.org/canaper/articles/parallel.html).

Datasets

canaper comes with three datasets for testing and demon-
stration (Table 1). Each is a list with two named elements, 
comm (community matrix, data frame) and phy (phyloge-
netic tree, list of class "phylo"). acacia includes data of 
Australian Acacia analyzed by Mishler et al. (2014). phy-
locom and biod_example are synthetic datasets com-
piled for testing software, and were originally published in 
Phylocom (Webb et al. 2008) and Biodiverse (Laffan et al. 
2010), respectively.

Example: Australian Acacia

Analysis with canaper

To demonstrate usage with a real dataset, we reproduced the 
analysis of Mishler et al. (2014), who conducted CANAPE 
on Australian Acacia using Biodiverse. All canaper anal-
yses were run with canaper ver. 1.0.0 in R ver. 4.2.1. 
We used the curveball randomization algorithm with 
50,000 iterations, since cpr_iter_sim() indicated 
this was sufficient to randomize the matrix (‘Major func-
tions’). Once the randomization algorithm and its settings 
have been selected, CANAPE can be conducted with just 
two commands.

# Set a seed for reproducibility
set.seed(12345)

# 1. Run randomization test
acacia_rand_res <- cpr_rand_test(
 acacia$comm, acacia$phy,
 null_model = "curveball",
 n_reps = 999, n_iterations = 50000,
 tbl_out = TRUE
)
# 2. Classify endemism
acacia_canape 
<- cpr_classify_endem(acacia_rand_res)

canaper does not include any plotting functions to visual-
ize the results. Rather, we recommend the ggplot2 package 
or base R graphics to visualize results. Here, we demonstrate 
use of the ggplot2 and patchwork packages to visualize 
the output of canaper (Fig. 2).

library(patchwork) # for multipart-panels
library(tidyverse) # includes ggplot2, 
other packages for data tidying

# Fist do some data wrangling to make 
the results easier to plot
# (add lat/long columns)
acacia_canape <- acacia_canape |>
 separate(site, c("long", "lat"), sep = 
":") |>
 mutate(across(c(long, lat), 
parse_number))
min_long <- min(acacia_canape$long)
min_lat <- min(acacia_canape$lat)

a <- ggplot(acacia_canape, aes(x = long, 
y = lat, fill = endem_type)) +
 geom_tile() +
 # Use same colors as Misher et al. 2014
 # (for CVD-safe colors see cpr_endem_cols)
 scale_fill_manual(values = mishler_
endem_cols) +
 guides(
 fill = guide_legend(title.position = 
"top", label.position = "bottom")
 ) +
 coord_fixed() +
 # add a 1000 km scalebar (data units 
are in m)
 geom_segment(
 x = min_long,
 y = min_lat,
 xend = min_long + 1000 * 1000,
 yend = min_lat
 ) +
 geom_text(
 x = min_long,
 y = min_lat,
 label = "1,000 km",
 vjust = -1, hjust = 0, size = 2
 ) +

 theme(
 legend.position = "bottom",
 legend.title = element_blank(),
 panel.grid.minor = element_blank(),
 axis.title = element_blank(),
 axis.text = element_blank(),
 axis.ticks = element_blank()
 )

b <- ggplot(
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 acacia_canape, aes(x = pe_alt_obs, y = 
pe_obs, color = endem_type)) +
 geom_abline(slope = 1, color = "dark-
grey") +
 geom_point() +
 scale_color_manual(values = mishler_
endem_cols) +
 labs(
 x = "Phylogenetic endemism on compari-
son tree",
 y = "Phylogenetic endemism on actual 
tree"
 ) +
 theme_bw() +
 theme(legend.position = "none")
a + b + plot_layout(ncol = 1) + 
 plot_annotation(
 tag_levels = "a",
 tag_prefix = "(",
 tag_suffix = ")")

As in Fig. 3 of Mishler et al. (2014), grid-cells with significant 
endemism are primarily located on the coasts, with mostly 
non-significant grid-cells in the interior (Fig. 2). Furthermore, 
the endemism types largely correspond between the two 
figures.

The color palette used in Fig. 2, mishler_endem_
cols, is the same as that used in Mishler et al. (2014). 
However, this palette may not be distinguishable to people 
with color-vision deficiency (CVD). Alternate color palettes 
(e.g. cpr_endem_cols) are also available in canaper 
that include CVD-safe colors (Okabe and Ito 2002). Palettes 
for plotting CANAPE and p-rank results can be selected 
with the cpr_make_pal() function. The same plot visu-
alized with CVD-safe colors is available in the Supporting 
information.

Comparison with Biodiverse

We also re-ran the Acacia analysis using Biodiverse ver. 3.1 
with the same settings as Mishler et al. (2014) (999 repli-
cates of the rand_structured null model) and com-
pared the results with those from canaper. Importantly, 
there is no expectation that results between the two should 
match exactly, for two reasons. First, the null model used 
between the Biodiverse and canaper analyses differ 
(rand_structured and curveball, respectively). 
rand_structured is not currently available in R, 
but we hope to add this to a future version of canaper. 
Second, the random communities generated in each run will 
be different, so the exact p-values will also be different. With 
a sufficiently high number of random communities, signifi-
cance (e.g. at the is α = 0.5 level) is expected to converge, 
but there may be borderline cases that appear significant in 
some analyses and non-significant in others. Note that we 
have verified that calculation of deterministic metrics that 
do not rely on random values, e.g. raw PD, are identical 

Figure 2. Categorical analysis of neo- and paleo-endemism 
(CANAPE) of Australian Acacia. (a) Map of Australia showing grid-
cells (communities) colored by endemism type. Latitude and longi-
tude projected into equal area Australian Albers (EPSG:3577) 
coordinate system (Butler et al. 2007). (b) Scatterplot comparing 
phylogenetic endemism (PE) of each community as measured on 
the original tree vs. a comparison tree with all non-zero branch 
lengths set to equal length, colored according to endemism type. 
This figure reproduces Fig. 3 of Mishler et al. (2014).
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between Biodiverse and canaper, and include a test for 
this in canaper.

When we compared endemism type between the cana-
per and Biodiverse CANAPE results for Australian Acacia, 
they agreed in 98.4% of grid-cells (Table 2). The total num-
ber of significant cells was very similar (n = 257 and 253 
sites, canaper and Biodiverse, respectively). The rand_
structured and curveball null models both preserve 
total abundance per species and richness of each site (com-
munity matrix marginal sums); in that sense, they are rela-
tively conservative null models (Strona et al. 2018), which 
may explain the relative high agreement between results. 
Selection of an appropriate null model is beyond the scope 
of this paper, but must be considered carefully in any com-
munity ecological analysis.

Computations were carried out on an MacBook Pro 
(2019) with 16 GB RAM and a 1.7 GHz, four core pro-
cessor. Approximate compute times were 44.4 min for 
Biodiverse and 8.6 min for canaper (sequential, i.e. non-
parallel mode, for both). However, when parallel computing 
was enabled for canaper with two cores, compute time 
dropped to 4.9 min. This demonstrates that canaper can 
efficiently compute moderately sized datasets with a personal 
laptop computer.

Comparison with other R packages

We are not aware of any other R packages that conduct the 
entire CANAPE pipeline automatically. However, there 
is a large number of packages for analyzing species diver-
sity (approximately 40 packages out of 15 300 as of 2019; 
Pavoine 2020). Some of those that are more closely related to 
canaper include the following. picante (Kembel et al. 
2010) was one of the first packages to offer calculation of 
phylogenetic alpha diversity such as MPD, MNTD, and PD 
(Webb 2000) and supports seven randomization algorithms, 
including two variations of the swap algorithm (Gotelli and 
Entsminger 2003, Miklós and Podani 2004). phylore-
gion (Daru et al. 2020) implements sparse matrix encoding 
to increase computing efficiency of PD and PE, and is used 
by canaper. vegan (Oksanen et al. 2017) performs a 
wide range of non-phylogenetic community ecology analyses. 
vegan includes by far the greatest number of algorithms for 
generating random communities, including curveball 
(Strona et al. 2014) and both variations of swap, and is 
used by canaper. adiv (Pavoine 2020) provides a flexible 
framework for analyzing alpha and beta diversity of biological 
communities based on either phylogenetic or trait distances. 

PhyloMeasures (Tsirogiannis and Sandel 2016) imple-
ments efficient routines for calculating phylogenetic diversity 
metrics. EcoSimR (Gotelli and Ellison 2013) provides ran-
domization algorithms as well as functions for characterizing 
community matrices and null distributions. As of writing, 
PhyloMeasures and EcoSimR had been removed from 
CRAN and may not be under active development.

Conclusions

The canaper package enables CANAPE completely within 
R for the first time. This will simplify workflows and facili-
tate reproducibility for researchers studying spatial biodi-
versity with R. Furthermore, canaper features efficient 
computing routines and simple yet flexible implementation 
of parallel computing, thereby decreasing computation time. 
canaper has already been used at least five studies while in 
development (Ellepola et al. 2022, Lu et al. 2022, Nitta et al. 
2022, Naranjo et al. 2023, van Galen et al. 2023). We expect 
canaper will become a major tool in the toolkit of the 
emerging field of spatial phylogenetics alongside Biodiverse.

To cite canaper or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘ver. 1.0’:
Nitta, J. H., et al. 2023. canaper: Categorical analysis of neo- and 

paleo-endemism in R. – Ecography 2023: e06638 (ver. 1.0).
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Table 2. Comparison of CANAPE results for Australian Acacia 
between canaper and biodiverse.

Endemism type n sites (canaper) n sites (Biodiverse)

Mixed 172 170
Neo 8 7
Not significant 2780 2784
Paleo 36 35
Super 41 41
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(https://doi.org/10.5281/zenodo.5094032). Usage of cana-
per is documented at https://docs.ropensci.org/canaper/.

Code and data used to conduct analyses and generate this 
manuscript are available at https://github.com/joelnitta/can-
aper_ms, and can be run using the Docker image joelnitta/
canaper_ms available at https://hub.docker.com/r/joelnitta/
canaper_ms.

The acacia dataset was originally published by 
Mishler et al. (2014).

Supporting information

The Supporting information associated with this article is 
available with the online version.
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