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We live in an era of unprecedented eco-
logical disruption and human-driven ex-
tinction. Conservation policies seeking 
to mitigate such damage depend on 
documenting biodiversity while at the 
same time determining the processes 
generating it (Smith et al., 1993). Due to 
the large amounts of data required and 
because of the complex and intertwined 
nature of ecology, this is a difficult en-
deavour and we can only rarely discern 
particular determinants of species distri-
butions. In this issue of Annals of Botany, 
Heo et al. (2022) combine global sampling 
with recently developed machine learning 
methods to gain insight into the processes 
governing abundance in Asplenium scolo-
pendrium, or hart’s tongue fern (HTF; 
Fig. 1). Abundance is a key parameter for 
understanding biodiversity patterns, as it 
governs the existence of local populations 
and ultimately species; a full appreciation 
of the processes regulating abundance is 
critical to conserving biodiversity in the 
Anthropocene (Brown et al., 1995).

Hart’s tongue fern is a widely distributed 
species complex with major centres in 
Europe, North America and Asia. Among 
regions, HTF shows different patterns 
of abundance, with patchily distributed, 
smaller populations in North America, 
widely and continuously distributed 
populations in Europe and intermediate 
densities in Asia. A much smaller population 
centre in New Zealand likely stems from 
recent introduction and naturalization 
(Brownsey and Perrie, 2017). Hart’s 
tongue fern has been well collected and 

documented, with thousands of occurrence 
records available in GBIF. Thus, HTF is 
an excellent system for understanding the 
processes affecting species abundance on 
global and local levels.

It is likely that processes at multiple 
scales interact to impact abundance (Brown, 
1984). At broad (global) scales, climate 
change may shift species distributions along 
latitudinal gradients (Chen et al., 2011). 
Also at larger scales, changes in land use 
influence species distributions (Daskalova 
et al., 2020). At the same time, processes 
acting at regional to local scales, such as soil 
type distributions and local climates, further 
influence species abundance (Lafleur et al., 
2010; Williams and Newbold, 2020). The 
complex and interwoven nature of these 
processes has long been an impediment to 
understanding how they function in detail. 
However, Heo et al. (2022) were able to 
use machine learning, in combination with 
dense sampling, in an attempt to overcome 
these difficulties.

Mathematical models, and linear 
regression models in particular, have long 
been a key tool in ecology (Bolker et al., 
2009). Classic ecological approaches 
typically start by defining a reasonable 
model for a given phenomenon and then 
seek to fit the parameters of the model to 
the data. While such classic models are 
straightforward to interpret, they often 
have relatively low explanatory power. 
This stems from the extremely complex 
nature of ecology, which includes many 
interacting processes across multiple 
scales (Graham, 2003). Machine learning 
approaches, on the other hand, do not 
start from a particular model; rather, they 
attempt to learn the relationship between 
predictors and response variables via 
iterative algorithms. While these represent 
promising approaches for understanding 
ecological processes, they have not been 
widely applied in ecology, perhaps due 
to the dominant statistical paradigm that 
has focused on explanation rather than 
prediction (Elith et al., 2008).

Heo et al. (2022) used boosted 
regression trees (BRTs), a type of machine 
learning that combines a large number of 
simple regression trees to obtain a robust 
prediction (Elith et al., 2008). Their BRT 
model included variables at both global 
(e.g. magnitude of past climate change, 
anthropogenic impacts) and regional 
(topography, edaphic conditions, local 
climate) scales. The BRT model is well 
suited to analyses including interacting 

variables at multiple scales as it is non-
parametric and insensitive to outliers; 
furthermore, any potential interactions 
are accounted for during the learning 
process and do not need to be specified 
a priori. Since HTF was already known 
to show different distribution patterns 
between regions (Europe, North America 
and Asia), Heo et al. (2022) applied the 
BRT model separately to each region and 
compared the results.

On a global scale, Heo et al. (2022) 
found that HTF is mostly restricted to a 
single biome, temperate broadleaf and 
mixed forests. Furthermore, their niche 
modelling analysis showed that this 
species complex has likely shifted its range 
from lower to higher latitudes since the 
last glacial maximum (~21 ka). In addition 
to these common global processes, the 
BRT model revealed processes operating 
at finer scales that in some cases differed 
between regions.

One clear factor influencing abundance 
identified by Heo et al. (2022) was 
population isolation (measured as distance 
to the nearest population), which was found 
to be the most important variable across all 
four regions. However, population isolation 
was less important in North America, 
where populations tend to be restricted to 
scattered microhabitats, than in Europe or 
Asia, where populations tend to be more 
contiguous. It could be that distances 
between North American populations 
are greater than the typical dispersal 
ability of HTF. In contrast, populations 
in Europe and Asia may be subject to 
the ‘rescue effect’, whereby propagules 
from neighbouring populations are able 
to replenish a low-abundance population 
otherwise in danger of extirpation (Brown 
and Kodric-Brown, 1977).

Heo et al. (2022) found that the next 
most important variables after population 
isolation varied among regions. In 
Europe, precipitation seasonality was 
most important, whereas precipitation 
heterogeneity and past climate change 
were most important in Asia and North 
America, respectively. Again, these 
differences make sense in light of what 
is known about the geographic context of 
each area. In Europe, dense populations 
(hotspots) of HTF occur in the west where 
the climate is oceanic. In contrast, HTF 
hotspots in Asia are often on mountainous 
islands with steep climatic gradients, 
which is reflected in the importance of 
precipitation heterogeneity in the BRT 
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model for that area. The flora of North 
America has been strongly affected 
by glaciation, and many extant HTF 
populations there are relictual, persisting 
in concave karst landscapes with protected 
microclimates. This is consistent with both 
a relatively low contribution of population 
isolation and a greater contribution of 
past climate change observed in the BRT 
model for North America.

Heo et al. (2022) further interpreted the 
significance of their findings in the context 
of the conservation of this species complex. 
In particular, the results of their fine-scale 
case study of population change over time 
in North America provided evidence that 
conservation policies have an impact on 
survival of HTF. For paired populations 
in similar environments, both at higher 
latitudes, those outside of conservation 
zones tended to decrease in abundance 
over time, whereas those in protected 
areas increased. While many studies on the 
impact of climate change on biodiversity 
are overwhelmingly negative, this 
highlights the clear benefits to be gained 
from establishment of protected areas.

There are some caveats that must be 
recognized in this study. First, occurrence 
records in GBIF are frequently biased in 
their spatial and temporal sampling. For 
example, plant specimens are more likely 
to be collected along roads and during 
the spring (Daru et al., 2018). Second, 
any model that includes spatial data may 
be subject to spatial autocorrelation, the 
tendency for data points that are closer 
together to be more similar. Spatial 
autocorrelation violates the assumption 
of independent sampling and may unduly 
influence models (Legendre, 1993). While 
Heo et al. (2022) partially accounted for 
this by rarefying the occurrence data, they 
did not check for spatial autocorrelation 
in the model residuals, so it is unclear if 
results may have been influenced by spatial 
autocorrelation. Future studies should 

explicitly check for spatial autocorrelation 
and handle it appropriately if detected.

Questions of statistical best practices 
aside, the study of Heo et al. (2022) is a 
clear example of the insights that can be 
gained from the application of machine 
learning to large biodiversity datasets. 
Such investigations will surely become 
more insightful as datasets expand and 
analytical methods improve. Indeed, they 
are needed more urgently than ever as life 
on this planet is increasingly confronted 
with the effects of unchecked economic 
growth gained at the expense of our 
environment.
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Fig. 1. Asplenium scolopendrium var. americanum growing in New York. Photo by James E. Watkins Jr, used with permission.
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